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Introduction: Obstructive sleep apnea syndrome (OSAS) degrades sleep quality 
and is associated with serious health conditions. Instead of the gold-standard 
polysomnography requiring complex equipment and expertise, a non-obtrusive 
device such as ballistocardiography (BCG) is more suitable for home-based 
continuous monitoring of OSAS, which has shown promising results in previous 
studies. However, often due to the limited storage and computing resource, 
also preferred by venders, the high computational cost in many existing BCG-
based methods would practically limit the deployment for home monitoring.

Methods: In this preliminary study, we propose an approach for OSAS monitoring 
using BCG signals. Applying fast change-point detection to first isolate 
apnea-suspected episodes would allow for processing only those suspected 
episodes for further feature extraction and OSAS severity classification. This can 
reduce both the data to be stored or transmitted and the computational load. 
Furthermore, our approach directly extracts features from BCG signals without 
employing a complex algorithm to derive respiratory and heart rate signals 
as often done in literature, further simplifying the algorithm pipeline. Apnea-
hypopnea index (AHI) is then computed based on the detected apnea events 
(using a random forest classifier) from the identified apnea-suspected episodes. 
To deal with the expected underestimated AHI due to missing true apnea events 
during change-point detection, we apply boundary adjustment on AHI when 
classifying severity.

Results: Cross-validated on 32 subjects, the proposed approach achieved an 
accuracy of 71.9% for four-class severity classification and 87.5% for binary 
classification (AHI less than 15 or not).

Conclusion: These findings highlight the potential of our proposed BCG-
based approach as an effective and accessible alternative for continuous OSAS 
monitoring.
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1 Introduction

Sleep disordered breathing is a group of pervasive and serious 
sleep disorders characterized by various forms of breathing 
abnormalities during sleep, including obstructive sleep apnea 
syndrome (OSAS), hypoventilation, and associated decreased oxygen 
saturation. OSAS affects about 9–38% of adults worldwide, and this 
percentage is higher in the obese population (Senaratna et al., 2017). 
OSAS not only influences the quality of sleep, but is also associated 
with a variety of serious health issues such as hypertension, 
cardiovascular disease, stroke and diabetes (Young et al., 2002).

The full night polysomnography (PSG) recording is commonly 
regarded as the gold standard for the diagnosis of OSAS, as it can 
record a wide range of multi-channel physiological parameters in 
detail, including electroencephalogram (EEG), electrooculogram 
(EOG), electromyogram (EMG), electrocardiogram (ECG), 
respiratory flow, respiratory effort, and oxygen saturation, etc. (Berry 
et al., 2012). These parameters enable a comprehensive assessment of 
a patient’s sleep status and the level of respiratory disturbance. 
However, PSG recording needs to be performed in a specialized sleep 
laboratory in a hospital using specialized clinical equipment that is 
complex and costly to set up by experts, and also requires patients to 
be  monitored overnight in the hospital. This unnatural sleep 
environment may lead to patient discomfort, which may affect the test 
results (Bruyneel and Ninane, 2014).

To overcome the limitations of PSG, portable and non-obtrusive 
sleep monitoring technologies based on cardio-respiratory signals, 
for example, wrist-worn photoplethysmography and bed-based 
ballistocardiography (BCG), are gradually attracting more interest 
(Radha et al., 2021; Haghi et al., 2024; Yoon and Choi, 2023). Portable 
devices are able to be used in the home setting, which allows patients 
to be  monitored in a more familiar sleeping environment. These 
home-based devices are usually easier to operate and less expensive 
than clinical devices. Although these portable, non-obtrusive devices 
usually record, compared with PSG, fewer physiological parameters, 
they have been shown able to detect OSAS (Mendonça et al., 2018). 
In recent years, research on OSAS has made significant progress, 
especially in terms of monitoring and automated assessment of OSAS 
using a non-invasive device assisted with machine learning 
algorithms (Bazoukis et  al., 2023; Retamales et  al., 2024). For 
example, the use of a bed-based sensor to measure BCG allows for 
detection of small vibrations caused by a patient’s cardiac and 
respiratory activities, and these activities have been demonstrated to 
associate with sleep apnea, making them possible to be  used for 
OSAS monitoring (Kholghi et  al., 2022). BCG is a non-invasive 
technique measuring the (changes in) mechanical contraction forces 
generated mainly by the beating heart due to the blood ejection at 
each cardiac cycle from heart to arteries. In addition, forces generated 
by gross body movements as well as thoracic and abdominal 
movements when breathing are also captured by the BCG signal. 
Different types of sensors can be  used to measure BCG such as 
pressure sensors, optical sensors, accelerometers, and piezo-electric 
sensors (Joshi et al., 2018). This technique, compared with wearables, 
is completely non-obtrusive and does not require the patient to wear 
a sensor, greatly enhancing patient comfort and compliance during 
nighttime sleep. In addition, BCG devices allow for long-term 
monitoring, providing an opportunity for continuous 
OSAS assessment.

Over the past few years, multiple studies have applied BCG to the 
field of non-obtrusive OSAS monitoring and machine learning 
models have been developed to automatically detect apneic events 
and/or classify OSAS severity of patients (Wang et al., 2017; Huysmans 
et al., 2019; Sadek et al., 2020). Promising performance for apnea 
detection has been achieved in some studies, even better than that 
obtained using standard respiratory and/or electrocardiography 
signals (Olsen et al., 2020; Xie et al., 2024), though comparing OSAS 
classification performance on different study cohorts is always 
difficult. While cross validation was applied in some of those studies, 
it is unclear whether that was strictly “subject-independent” – data 
from same subjects were either in the training or in the test set. Having 
a model trained on the data from a subject already exposed to test data 
from the same subject would result in bias, and therefore such model 
is impractical and its performance is overrated. In addition, many of 
those studies require precise identification of heartbeats from BCG 
signals to characterize heart rate variability using algorithms that are 
relatively computationally intensive such as template matching (Shi 
et al., 2008), wavelet transform (Sadek and Abdulrazak, 2021), and 
even machine learning (Bruser et al., 2011) or the combination of 
them (Mou et al., 2023). Some other studies employed advanced deep 
neural network models operated directly on BCG signals (Cimr and 
Studnička, 2020). However, high computational cost would practically 
limit the deployment or implementation of those algorithms on a 
device, particularly for the sake of cost-effectiveness from a 
commercial perspective.

Based on non-obtrusive BCG signals, the aim of this study was to 
detect apneic events using a “cost-effective” approach and thereafter 
classify OSAS severity (normal, mild, moderate, and severe) from the 
estimated apnea-hypopnea index (AHI). The cost-effective approach 
was heuristically explored, focusing on using algorithms that require 
lower computational complexity and reduced intermediate data 
storage, making the approach more adaptable for implementation on 
devices with often limited data processing and storage capabilities. To 
achieve this, we  first identified apnea-suspected episodes using a 
simple change-point detection algorithm instead of applying feature 
extraction and machine learning apnea detection to the entire 
recording for apnea detection. Afterwards, we extracted features only 
from the BCG signal without identifying heartbeats from BCG that 
would likely require a computationally intensive algorithm. A fast and 
explainable tree-based machine learning model was used to detect 
apneic events from all apnea-suspected episodes. Note that the term 
“apneic events” presented in this paper is also sometimes called “sleep-
disordered breathing events” covering obstructive, central, and mixed 
apnea as well as hypopnea, but excluding other sleep-related breathing 
disorders such as hypoventilation and hypoxemia.

2 Data collection and subjects

As shown in Figure 1a, the non-obtrusive BCG system (Slaap 
Lekker Monitor, Bobo Technology Ltd., Jiaxing, China) used for data 
collection is the same as that used in previous studies (Su et al., 2022; 
Su et al., 2024). The system consists of primarily three modules: a 
microcontroller, a signal conditioning circuit including amplifier, filter 
and analog-to-digital converter, and a flexible bed-based piezoelectric 
sensor stripe (width: 7 cm, length: 72 cm). A digital automatic gain 
control circuit is designed in the system aiming to adapt the signal 
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amplification to avoid, for example, insufficient signal magnitude or 
excessive signal magnitude leading to signal clipping (outside the 
dynamic range). This allows the signal acquisition to fit various 
conditions that can depend on, for example, the mattress upon which 
the sensor stripe is placed, the weight of the subject, and changes of 
sleeping posture. When recording, the sensor stripe was placed above 
the mattress and underneath the bedsheet as illustrated in Figure 1b.

In this study, BCG data were analyzed from 32 subjects, who were 
monitored at the Sir Run Run Shaw Hospital (SRRSH), affiliated with 
the Zhejiang University School of Medicine, Hangzhou, China. The 
collected BCG signals had a sampling rate of 125 Hz. On average, 8.5 h 
of BCG signals were recorded per subject during overnight sleep. 
During BCG monitoring, the subjects underwent PSG monitoring 
simultaneously, and from the recorded PSG, apneic events (including 
obstructive apnea, central apnea, mixed apnea, and hypopnea) and 
sleep–wake states were manually scored by three trained sleep experts 
with majority vote in case of disagreement. Apnea-hypopnea index 
(AHI, the number of apneic events per hour during sleep, excluding 
wake state) was calculated for each patient. The cohort for this study 
included 8 patients with severe (AHI ≥ 30 per hour), 9 with moderate 
(15 ≤ AHI < 30 per hour), and 7 with mild (5 ≤ AHI < 15 per hour) 
OSAS. The remaining 8 subjects had no OSAS diagnosed (AHI < 5 
per hour). The included patients had no (prior) OSAS-related therapy 
(e.g., medication or continuous positive airway pressure) nor other 
diagnosed severe comorbidities. Among the patients, one had atrial 
fibrillation and five had hypertension where four were taking 
antihypertensive drugs. All subjects provided an informed consent 
form, and the study was approved by the local ethics committee of the 
SRRSH. On average, the subjects included in this study were 
dominated with obstructive (57.4%) and hypopnea (32.9%) events. 
Details of subjects and their OSAS characteristics are provided in 
Table 1.

The estimated prevalence of OSAS significantly varied across 
studies, age groups and countries. It was estimated to be 12.6% in 
middle-aged adults (Wei et  al., 2022) which are considered the 
population of interest for home-based OSAS screening since many of 
them are likely underdiagnosed. Due to the proof-of-concept scope of 
this study, we accepted a lower confidence level at 90% and a higher 

margin of error at 10% (Fabozzi et  al., 2023) for sample size 
calculation, leading to a minimum sample size of 30. We therefore 
considered the chosen sample size of 32 acceptable in power (albeit 
not strong) in this preliminary study.

3 Methods

The flowchart of the proposed approach for OSAS monitoring and 
assessment in this preliminary study is shown in Figure 2, where the 
key steps will be explained in detail in the following subsections.

3.1 Signal processing and labeling

The acquired BCG signals were firstly processed using a 7th-order 
band-pass Butterworth filter (0.05–3 Hz) to suppress baseline wander 
and motion artifacts while preserving cardio-respiratory information. 
The processed signal was then z-score normalized and further 

FIGURE 1

The BCG system (a) where a piezoelectric sensor stripe connected to a unit including a microcontroller and a signal conditioning circuit, and the 
schematic graph (b) illustrating the sensor stripe placed under a subject measuring BCG data from the subject during sleep (Su et al., 2022).

TABLE 1 Subject and OSAS characteristics (N = 32).

Characteristics Mean (SD) over 
subjects or count

Gender 27 males, 5 females

Age 49.5 (14.3) years

Body mass index 25.5 (4.6) kg/m2

Normal (AHI < 5) 8

Mild (5 ≤ AHI < 15) 7

Moderate (15 ≤ AHI < 30) 9

Severe (AHI > 30) 8

Percentage of obstructive events 57.4% (22.9%)

Percentage of central events 1.8% (6.2%)

Percentage of mixed events 4.8% (7.3%)

Percentage of hypopnea events 32.9% (23.1%)
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processed with a root mean square (RMS) filter to further remove 
motion artifacts. Specifically, the sliding window of the RMS filter was 
empirically set as 30 s and the signal segments where the RMS 
amplitude exceeded one SD from the mean were identified as motion 
artifacts and therefore discarded, under the assumption that no apneic 
events occurred during these movement periods.

To efficiently identify potential apneic events without applying 
machine learning to the full night recording, we applied a fast change-
point detection algorithm using the MATLAB function findchangepts 
(Lavielle, 2005; Killick et  al., 2012), which provided a coarse 
identification of apnea-suspected episodes. Standard deviation (SD) 
of the signal was empirically chosen to measure the changes and the 
threshold was set as 50 to identify these suspected episodes. The 
episodes identified less than 10 s too short to be apneas or hypopneas 
were excluded for further detection. The remaining episodes were 
then classified using a machine learning model as either apneic or 
non-apneic events for final AHI estimation. For labeling purpose, the 
start and end timestamps of each true apneic event were first 
annotated based on the synchronously collected PSG signals by sleep 
experts. The apnea-suspected episodes were labeled as positive (1) if 
they overlaps with an annotated true apneic event, and negative (0) 
otherwise. Figure 3 compares a normal BCG signal (without apnea), 
a signal including an obstructive event, and a signal including a 
hypopnea event, where breathing-related (low frequency) fluctuation 
modulated in signal (peak) envelope can be observed in the normal 
BCG signal while this is less visible with slightly reduced envelope 
fluctuation in the hypopnea event and is almost invisible in the 
obstructive event. Besides, the start and end of the detected change 
points are indicated in the figure, overlapping with both true events.

3.2 Feature extraction

We generated in total 38 features from the processed BCG signals 
for each apnea-suspected episodes after change-point detection. Since 
the suspected episodes can vary in length, features should 
be insensitive to signal length. Table 2 summarizes all the features 
extracted in the time and frequency domains.

For time-domain BCG features, the signal power and SD were 
computed and these features might be  associated with breathing 
amplitude and motion artifacts. Zero-crossing rate indicates the 

dominant frequency of a signal (Sadek et al., 2019). More assertive 
distribution-related metrics such as kurtosis and skewness of the 
signal were extracted (Huysmans et al., 2019). Teager energy operator 
collectively quantifies high-resolution time and frequency energy 
(Joshi et al., 2018), and the mean and SD of Teager energy analyzed its 
average and changes over time. Sample entropy to assess signal 
complexity or regularity has been applied for BCG-based OSAS 
identification in a previous study (Zhao et al., 2015). Intuitively, the 
presence of an apneic event may correlate a decreasing trend in signal 
amplitude due to decreased or cessation of breathing, we therefore 
tried to characterize such trend using a simple linear fitting model 
with parameters including the model’s intercept, slope, and residual. 
To further characterize the signal waveform structure, a 15th-order 
autoregressive (AR) model was applied (Alivar et al., 2019), resulting 
in 15 AR coefficients used as features.

As mentioned before, when a subject is sleeping, the BCG sensor 
measures the vertical force generated by the subject’s heartbeat and 
breathing. Hence the dominant frequency (the peak frequency in the 
Fourier-transformed power spectrum) between 0.8 and 1.8 Hz and 
between 0 and 0.5 Hz and its spectral power were obtained, where 
presumably these two dominant frequencies corresponded to average 
heart rate and respiratory rate of the signal, respectively. Mean and SD 
of the normalized spectral power between 0 and 3 Hz and between 3 
and 10 Hz were used to approximate characteristics corresponding to 
major cardio-respiratory activity and noise such as motion artifact and 
“I-J-K” complex harmonics (Wiard et al., 2010; Inan et al., 2009), 
respectively. Inspired by the analyses of breathing rate and heart rate 
variability (Wang et al., 2017; Huysmans et al., 2019; Fonseca et al., 
2015), we computed the normalized spectral power in the very low 
frequency band (VLF, 0–0.05 Hz), low frequency band (LF, 0.05–
0.15 Hz), and high frequency band (HF, 0.15–0.5 Hz), and also the 
ratio between LF and HF powers.

3.3 Modeling and evaluation

Random forest (RF) is an efficient, explainable machine 
learning algorithm with inherent capability of selecting features 
or ranking feature importance when making classification 
decision (Breiman, 2001), and it has proven successful in 
automatically assessing OSAS (Wang et  al., 2017; Balci et  al., 

FIGURE 2

Flowchart of the proposed approach for OSAS monitoring, including, from left to right, BCG signal processing, change-point detection, pre-
identification of apnea-suspected episodes, AHI estimation, and OSAS severity classification. RMS, root mean squired filtering.
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2022). We hence employed an RF classifier with features extracted 
from solely BCG signals to detect true apneic events from all 
pre-identified apnea-suspected episodes, i.e., to classify all 
suspected episodes as apneic and non-apneic events. For 
comparison, we  also applied other classifiers with different 
mechanisms including support vector machines (SVM) and 
logistic regression (LR).

Model performance in detecting apneic events and estimating 
AHI was evaluated using leave-one-out cross-validation. Specifically, 
the data was partitioned into 32 folds, each corresponding to a 
subject. In each iteration, features from one subject served as the test 
set, while the model was trained on features from the remaining 31 
folds which formed the training set. Within each training set of 31 
subjects during each cross-validation iteration, the data were further 

FIGURE 3

Examples of raw BCG signals (in arbitrary unit, a.u.) with normal breathing, obstructive event, and hypopnea event. Start and end points of the apnea-
suspected episode after change-point detection (change-point start and change-point end) are marked.

TABLE 2 Description of BCG features used for OSAS monitoring.

Features Domain Description

Pow, Sd, Zcr Time Signal power, SD, and zero-crossing rate

Kurt, Skew Time Signal kurtosis and skewness

TEmean, TEsd Time Mean and SD of signal Teager energies

SampEn Time Sample entropy of signals

Int, Slope, Res Time Intercept, slope, and residual of linear fitting on signal

AR1, AR2, …, AR15 Time Coefficients of autoregressive modeling on signal

DF1, DF2 Frequency Dominant frequency between 0 and 0.5 Hz (1) and 0.8–1.8 Hz (2)

SP1, SP2 Frequency Spectral powers of dominant frequency DF1 and DF2

SPLmean, SPLsd Frequency Mean and SD of spectral powers between 0 and 3 Hz

SPHmean, SPHsd Frequency Mean and SD of spectral powers between 3 and 10 Hz

VLF Frequency Spectral power in very low frequency band (0–0.05 Hz)

LF Frequency Spectral power in low frequency band (0.05–0.15 Hz)

HF Frequency Spectral power in high frequency band (0.15–0.5 Hz)

LF/HF Frequency Ratio between LF and HF
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partitioned into training and validation sets where the validation set 
was used for parameter optimization. For validation, four subjects – 
one from each OSAS severity category – were randomly selected in 
each iteration of cross-validation. Key model parameters, including 
the number of trees, minimum leaf size, and prior probability, were 
optimized using Bayesian optimization based on validation 
performance, and then the trained model with optimized parameters 
was applied to the test data from the left-out test subject. The detected 
apneic events for each test subject by the model were then used to 
estimate the AHI for that subject. Model performance was assessed 
by comparing detected apneic events with PSG-based (true) apneic 
events annotated by sleep experts, and we calculated aggregate or 
overall sensitivity, precision, and F1 score pooling the detection 
results from all subjects. Scatter and Bland–Altman plots were used 
to visualize AHI estimation and the Spearman’s correlation was 
examined between the (BCG-based) estimated AHI and the 
corresponding (PSG-based) actual AHI values.

For comparison purposes, we  also extracted features from 
respiratory and heart rate variability (i.e., heartbeat interval) signals 
derived from BCG signals, similar to previous studies (Long et al., 
2014; Wang et al., 2017; Zhao et al., 2015). The detection performance 
achieved using solely the BCG features proposed in this work (i.e., 
features extracted directly from BCG signals) was compared with that 
using the combination of BCG and BCG-derived respiratory (BDR) 
features, and that of BCG, BDR, and BCG-derived heart rate 
variability (BDH) features. Detailed descriptions of BDR and BDH 
features are provided in the Supplementary Tables S1, S2. These 
features were extracted aiming to quantify cardio-respiratory 
dynamics and morphological properties that can be informative to 
further capture OSA-related characteristics when apneic events 
are present.

For classification of OSAS severity, an underestimated AHI would 
be expected primarily likely because of two possible reasons. First, 
some apneic events might be missed after change-point detection. The 
missed apneic events might be more associated with hypopneas since 
hypopneas were mainly defined as slowed, shallow, and restricted 
breathing, whose change points were, intuitively, more difficult to 
be accurately detected, rather than apneas with complete cessation of 
breathing. Second, the estimated AHI was computed based on total 
recording time that was actually respiratory event index (REI) while 
the actual PSG-based AHI was computed based on total sleep time. 
Therefore we decided to adjust the potential AHI underestimation by 
changing the three thresholds or boundaries (normal-mild: 5, mild–
moderate: 15, and moderate–severe: 30) when classifying OSAS 
severity. The boundaries were optimized on the training data using 
grid search aiming at maximizing OSAS severity classification 
performance, resulting in different boundary values during different 
iterations or folds of cross-validation. A unique set of boundaries was 
assembled by, for each boundary, taking the median of the optimized 
or adjusted boundary values over cross-validation folds. This new set 

of boundaries were then used to determine OSAS severity for 
all subjects.

Confusion matrix, overall accuracy, and Cohen’s kappa coefficient 
were obtained to assess the model’s performance in classifying OSAS 
severity. Results with and without boundary adjustment were 
compared. Results in distinguishing between patients with normal to 
mild (AHI < 15) and moderate to severe (AHI ≥ 15) were also 
reported. We also investigated the correlation between underestimated 
AHI and hypopnea index (number of hypopnea events per hour, 
calculated as the total number of hypopnea events divided by total 
recording time in hours per night per subject).

4 Results

A total of 6,320 apnea-suspected episodes were pre-identified 
after change-point detection, where 3,032 episodes were associated 
with true apneic events (out of the total number of 5,057 true apneic 
events) when compared with PSG-based annotation. All the 6,320 
episodes were then included for further feature extraction and 
classification between apneic and non-apneic events using leave-
one-out cross-validation and the RF classification algorithm. The 
overall apneic event detection results on the entire recordings are 
shown in Table 3. When using only the BCG features, an overall or 
aggregate sensitivity of 0.33, a precision of 0.57, and an F1 score of 
0.42 were reached. It can be  seen that in total around 67% true 
apneic events were missed, where 59% of them (accounting for 40% 
of total apneic events) were already missed by change-point 
detection and the remaining ones (accounting for 27% of total 
events) were missed by the subsequent machine learning model. 
Notably, these results were only slightly lower than those when 
combining BCG features with cardio-respiratory features extracted 
from BCG-derived respiratory and heart rate variability signals. In 
general, the apneic event detection results achieved using RF were 
better than those using SVM and LR as presented in 
Supplementary Tables S3, S4, respectively, in particular when using 
the BCG features solely.

Figure 4 shows the scatter plot for AHI estimation using only 
BCG features. A relatively high Spearman’s correlation coefficient r of 
0.73 was achieved. However, as we expected, the BCG-based AHI 
values obtained using our model were strongly underestimated 
compared with the actual PSG-based AHI values. This can also 
be seen in the Bland–Altman plot in Figure 5, showing an average 
underestimation of 10.4 events per hour in AHI.

The confusion matrices for OSA severity classification before and 
after adjustment of boundaries are presented in Tables 4, 5, respectively. 
The adjusted boundaries were 2 for normal-mild, 4 for mild–moderate, 
and 18 for moderate–severe, which means that a subject was classified 
without OSAS when AHI < 2, with mild OSAS when 2 ≤ AHI < 4, 
moderate OSAS when 4 ≤ AHI < 18, and with severe OSAS when 

TABLE 3 Performance of apneic event detection.

BCG features BCG, BDR features BCG, BDR, BDH features

Sensitivity 0.33 0.35 0.34

Precision 0.57 0.56 0.63

F1 score 0.42 0.43 0.44
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AHI > 18. These boundaries were lower than the original ones (5, 15, 
and 30), demonstrating the presence of underestimation of AHI using 
the machine learning model. Figure 6 shows the boxplots of adjusted 
boundaries across cross-validation folds for different subjects. This 

figure indicates that the adjusted boundaries were mostly consistent 
for different folds, except for a couple of “outliers.”

As presented in Table 6, the severity underestimated before the 
adjustment of boundaries showed a poor accuracy and kappa value of 
46.9% and 0.30, respectively. After adjustment of the boundaries for 
severity classification, the performance was largely improved to an 
accuracy of 71.9% and a kappa of 0.62 indicating a substantial agreement 
between the actual AHI based on PSG-based annotation and the 
estimated AHI based on our proposed BCG-based automatic approach. 
Besides, combining both BCG and BDR and/or BDH features did not 
yield improvement in classification performance compared with the use 
of solely BCG features. Considering distinguishing between normal-to-
mild and moderate-to-severe OSAS, promising performance has been 
achieved: accuracy = 87.5%, kappa = 0.75. The scatter plot (Figure 7) 
shows the relationship between the underestimated AHI (= actual 
AHI – estimated AHI) and the hypopnea index. A significant correlation 
was found, with a Spearman’s correlation coefficient of 0.64 (p < 0.001).

5 Discussion

As presented before, the change-point detection led to a high miss 
rate of apneic events and also many false positives, though machine 
learning was expected to correct some of the false detections. Actually 
the SD threshold used in change-point detection may be  overly 
sensitive to the tradeoff between miss rate and false detections. 
Further optimization on a large dataset with more patients may 
be  required to verify the effect of this threshold on final OSAS 
monitoring and assessment. The overall performance in apneic event 
detection using the RF classifier is similar to that reported in a prior 
study using a non-unobtrusive BCG-based bed sensor (Sadek et al., 
2020) but they performed machine learning-based event detection on 
a minute-by-minute basis. When comparing different classification 
algorithms (classifiers) in apneic event detection, RF in general 
outperformed SVM and LR (Supplementary Tables S1, S2). In 
addition to the conventional machine learning algorithms, employing 
a more advanced classification algorithm such as deep neural networks 
would has the potential to further improve the detection performance. 
Yet we decided not to investigate this since deep learning usually 
requires a large, diverse dataset to train a reliable model while in this 
study only 32 patients’ data were included. Although the computational 
complexity of training a deep learning model is high, deploying a 
trained model usually needs much less computational load. Thus it 
merits further investigation on using advanced deep neural networks 
for BCG-based OSAS assessment when a much larger dataset 
is available.

FIGURE 4

Scatter plot for BCG-based AHI estimation (correlation coefficient: 
r = 0.73).

FIGURE 5

Bland–Altman plot for BCG-based AHI estimation. An average 
underestimation of AHI = 10.4 events per hour can be observed 
compared with the reference actual AHI. The 95% limits of 
agreement (± 1.96 SD) are also indicated.

TABLE 4 Confusion matrix for BCG-based OSAS severity classification before boundary adjustment.

Predicted class*

Normal Mild Moderate Severe

True class

Normal 8 0 0 0

Mild 3 2 1 1

Moderate 1 6 2 0

Severe 1 2 2 3

*OSAS severity classification criteria with original boundaries: AHI < 5 (normal), 5 ≤ AHI < 15 (mild), 15 ≤ AHI < 30 (moderate), AHI ≥ 30 (severe). Correct classifications are indicated 
with green shading.
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In general, we achieved a good performance in assessing OSAS 
(i.e., classifying OSAS severity) in this study. Unlike many previous 
studies requiring complex algorithms to derive respiratory and 
heart-rate signals from BCG for feature extraction as stated in 
Section 1, the proposed approach only used features directly 
extracted from BCG signals showing comparable results in both 

apneic event detection and OSAS severity classification (Huysmans 
et al., 2019; Hayano et al., 2024). The BCG-based approach would 
be potentially suitable for continuous monitoring or screening of 
OSAS at home, in particular because of its high sensitivity at a 
relative low expense of specificity (false positives of 4 out of 15) in 
detecting moderate and severe cases from normal and mild cases 
as shown in Table 5. Beyond this preliminary study with a small 
sample size, in the future including more diverse samples (patients) 
in terms of age, sex, BMI, and OSA severity would help further 
verify the performance of our proposed approach in OSAS 
assessment and its generalizability to different patient subgroups 
with respect to demographics and clinical conditions.

There was a marked number of apneic events missed after the 
change-point detection before applying machine learning, which 
would likely be the cause leading to the clear underestimation of 
AHI values. To compensate for that, adjusting the boundaries for 
decision-making of OSAS severity has largely improved the 
severity classification performance, with an accuracy from 46.9 to 
71.9% for four classes (normal, mild, moderate, and severe) and 
from 62.5 to 87.5% for two classes (normal-to-mild and moderate-
to-severe). Notably, the adjusted boundaries for each cross 
validation fold were mostly the same (see Figure 6), demonstrating 
their consistency over subjects on our dataset, yet this requires to 
be further verified on an external, larger dataset.

The reduced boundary values (AHI of 2, 4, and 18) also 
indicate the underestimation of AHI and the improved 
performance demonstrates the effectiveness of boundary 
adjustment. Interestingly, the level of the underestimation was 
found to be  significantly correlated to the hypopnea index, 
implying that hypopnea events were more difficult to be “preserved” 
or identified by the change-point detection algorithm used in the 
present study. Actually, this was expected because the changes in 
BCG signal pattern during hypopnea would be  less profound 
compared with that during other subtypes of apneic events with 
complete cessation of breathing (see Figure 3 as an example). Such 
underestimation would lead to the dependency of optimal 
boundaries for OSAS severity classification on the characteristics 
of patients such as hypopnea index for example. In this regard, 
future study should either improve the change-point detection to 
be  robust or adaptive to different subtypes of apneic events or 
explore adaptive boundaries that are sensitive to hypopnea index. 
In addition to hypopnea index, other confounding factors or 
characteristics that might affect the boundaries are worth further 
analysis. For example, because the estimated AHI was computed 
based on total recording time instead of total sleep time (which is 
actually REI as mentioned before), a lower sleep efficiency should 

FIGURE 7

Scatter plot of underestimated AHI (actual AHI – estimated AHI) 
versus hypopnea index. Linear fitting was done showing a positive 
correlation, with a (Pearson) R2 value of 0.37 and a significant 
(Spearman) correlation coefficient of 0.64 (p < 0.001).

FIGURE 6

Boxplots of the three adjusted boundaries used for OSAS severity 
classification for different subjects.

TABLE 5 Confusion matrix for BCG-based OSAS severity classification after boundary adjustment.

Predicted class*

Normal Mild Moderate Severe

True class

Normal 8 0 0 0

Mild 1 2 2 2

Moderate 0 0 8 1

Severe 0 0 3 5

*OSAS severity classification criteria with adjusted boundaries: AHI < 2 (normal), 2 ≤ AHI < 4 (mild), 4 ≤ AHI < 18 (moderate), AHI ≥ 18 (severe). Correct classifications are indicated with 
green shading.
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correspond to a stronger underestimation of AHI. Due to the 
unavailability of sleep efficiency in our dataset, improving 
boundary adjustment by incorporating sleep efficiency should 
be studied in the future.

Comparing model performance with previous works in 
literature is often hard, mainly due to differences in, for example, 
sample size, patient and OSAS characteristics included, and 
training/testing procedure. Nevertheless, the results obtained in 
our study are found to be comparable to some recent studies using 
traditional ECG and respiratory effort or using other obtrusive 
sensors such as abdominal/thoracic belt and pulse oximetry for 
OSAS severity classification (accuracy of ~70%) (Retamales et al., 
2024; Xie et al., 2024). Though our performance was lower than a 
previous BCG-based model for classifying OSAS severity (Wang 
et al., 2017), the composition of apnea subtypes (primarily apnea 
and hypopnea) in the dataset used in that study is unclear. Model 
performance in OSAS assessment has been shown to be dependent 
of the subtypes (Balci et al., 2022). A reported accuracy of >94% in 
that study might be considered over-optimistic which is already 
higher than the result using pulse oximetry, thoracic and 
abdominal movement from PSG (Retamales et al., 2024).

Regarding the implementation considerations of the proposed 
approach, it is important to note that, for home monitoring health 
service providers (home-based OSAS monitoring in this case), 
implementing algorithms or models in the device is often 
considered advantageous in practice. This can avoid subscribing 
expensive cloud computing services for streaming and processing 
data from an increasingly large number of end users, while 
integrating an advanced high-performance processing unit in the 
device to run complex algorithms would drastically increase the 
cost. Hence, developing simpler algorithms requiring less floating-
point operations and intermediate data storage that can 
be  implemented in a lower-cost processing unit is crucial. 
Nevertheless, in the future the performance and usability of the 
proposed BCG-based OSAS assessment approach should be further 
validated outside of a hospital setting, in a home study.

A major limitation of our study was the use of a small dataset, 
although it is a preliminary, proof-of-concept study aimed at 
demonstrating the feasibility of the proposed approach for 
BCG-based OSAS monitoring. Leave-one-out subject-independent 
cross validation was employed to avoid bias and/or overfitting 
when training and parameter optimization. However, the model 
and the parameters might still be overfitted to this small dataset, 
mainly in terms of sample size (i.e., number of patients). It is 
therefore unclear how the model would generalize to other 
patients, promising its further validation on external, larger 
datasets in future work. In addition, although the boundary 
adjustment led to improved performance in OSAS severity 

classification, the adjusted boundaries might also overfit to the 
patients included in this study and they might not be optimal for 
new, unseen patients. The factors sensitive to the optimal 
boundaries are still unclear or undetermined, posing a risk of 
uncertainty in using those adjusted boundaries reported in this 
paper. When a larger dataset with more samples (patients) is 
available in the future, the possible sensitive factors should 
be investigated and the uncertainty should be analyzed. Another 
limitation is the lack of algorithm cost analysis of our proposed 
approach. The focus of our study was on initially investigating the 
approach’s feasibility hence we  took a heuristic method to first 
evaluate whether our approach would lead to plausible BCG-based 
OSAS assessment results if we used relatively simple algorithms or 
we  left out the part requiring the use of complex algorithms. 
Nevertheless, the computational complexity/cost and data storage 
of the proposed algorithm pipeline as well as the technical 
specifications of required processing and storage units should 
be quantitatively analyzed in the future.

6 Conclusion

This preliminary study presents a cost-effective approach for 
OSAS severity classification using BCG signals. By applying change-
point detection and direct feature extraction from BCG signals, the 
method achieved good classification performance comparable to 
existing studies but with a lower computational complexity. Although 
several limitation exists, the results demonstrated the feasibility of 
using our proposed BCG-based approach for effective and accessible 
OSAS assessment, offering a promising solution for home monitoring 
of OSAS.
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